DarkNet & CV2
def detect_np(net, meta, image, thresh=.5, hier_thresh=.5, nms=.45):
# image should be an cv2.imread or cv2.imdecode result
start = time.time()
im, image = array_to_image(image)
rgbgr_image(im)
num = c_int(0)
pnum = pointer(num)
predict_image(net, im)
dets = get_network_boxes(net, im.w, im.h, thresh,
hier_thresh, None, 0, pnum)
num = pnum[0]
if nms: do_nms_obj(dets, num, meta.classes, nms)
res = []
for j in range(num):
a = dets[j].prob[0:meta.classes]
if any(a):
ai = np.array(a).nonzero()[0]
for i in ai:
b = dets[j].bbox
res.append((meta.names[i], dets[j].prob[i],
(b.x, b.y, b.w, b.h)))
res = sorted(res, key=lambda x: -x[1])
end = time.time()
print("finding face finished in %f ms." % (end - start))
if isinstance(image, bytes): free_image(im)
free_detections(dets, num)
return res